1.6: LCAO and Hückel Theory 1 (Eigenfunctions) (2024)

  1. Last updated
  2. Save as PDF
  • Page ID
    221674
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vectorC}[1]{\textbf{#1}}\)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}}\)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}\)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A common approximation employed in the construction of molecular orbitals (MOs) is the linear combination of atomic orbitals (LCAOs). In the LCAO method, the kth molecular orbital, \(ψ_k\), is expanded in an atomic orbital basis,

    \[| \psi_{ k } \rangle = c_{ a } \phi_{ a } + c_{ b } \phi_{ b }+\ldots c_{ i } \phi_{ i } \label{eq1}\]

    where the \( \phi_{i} \)s are normalized atomic wavefunctions and . Solving Schrödinger’s equation and substituting for \(\psi_{k}\) yields,

    \[\begin{align*} H \psi_{ k } &= E \psi_{ k } \\[4pt] | H - E | \psi_{ k } \rangle &=0 \end{align*}\]

    Substitute Equation \ref{eq1}

    \[\left.| H - E | c _{ a } \phi_{ a }+ c _{ b } \phi_{ b }+\ldots+ c _{ i } \phi\right\rangle=0\]

    Left-multiplying by each \(\phi_{i}\) yields a set of i linear hom*ogeneous equations,

    \[\begin{align*}
    \mathrm{c}_{\mathrm{a}}\left\langle\phi_{\mathrm{a}}|\mathrm{H}-\mathrm{E}| \phi_{\mathrm{a}}\right\rangle+\mathrm{c}_{\mathrm{b}}\left\langle\phi_{\mathrm{a}}|\mathrm{H}-\mathrm{E}| \phi_{\mathrm{b}}\right\rangle+\ldots+\mathrm{c}_{i}\left\langle\phi_{\mathrm{a}}|\mathrm{H}-\mathrm{E}| \phi_{i}\right\rangle &=0\\[4pt]
    c_{a}\left\langle\phi_{b}|H-E| \phi_{a}\right\rangle+c_{b}\left\langle\phi_{b}|H-E| \phi_{b}\right\rangle+\ldots+c_{i}\left\langle\phi_{b}|H-E| \phi_{i}\right\rangle &=0\\[4pt]
    \vdots\\[4pt]
    c_{a}\left\langle\phi_{i}|H-E| \phi_{a}\right\rangle+c_{b}\left\langle\phi_{i}|H-E| \phi_{b}\right\rangle+\ldots+c_{i}\langle\phi_i|H-E| \phi_i\rangle&=0
    \end{align*}\]

    Solving the secular determinant,

    \[\begin{array}{ccccc}
    \mathrm{H}_{\mathrm{aa}}-\mathrm{ES}_{\text {aa }} & \mathrm{H}_{\mathrm{ab}}-\mathrm{ES}_{\text {ab }} & \cdots & \cdots & \mathrm{H}_{\mathrm{ai}}-\mathrm{ES}_{\mathrm{ai}} \\
    \mathrm{H}_{\mathrm{ba}}-\mathrm{ES}_{\text {ba }} & \mathrm{H}_{\mathrm{bb}}-\mathrm{ES}_{\mathrm{bb}} & \cdots & \cdots & \mathrm{H}_{\mathrm{bi}}-\mathrm{ES}_{\mathrm{bi}} \\
    \vdots & & \ddots & & \vdots \\
    \vdots & & & \ddots & \vdots \\
    \mathrm{H}_{\mathrm{ia}}-\mathrm{ES}_{\mathrm{ia}} & \mathrm{H}_{\mathrm{ib}}-\mathrm{ES}_{\mathrm{ib}} & \cdots & \cdots & \mathrm{H}_{\mathrm{ii}}-\mathrm{ES}_{\mathrm{ii}}
    \end{array} \mid=0 \nonumber\]

    where \(H _{ ij }=\int \phi H \phi d \tau ; \quad S _{ ii }=\int \phi \phi d \tau=1 ; \quad H _{ ij }=\int \phi H \phi_{ j } d \tau ; \quad S _{ ij }=\int \phi \phi_{ j } d \tau\)

    In the Hückel approximation,

    • \(H _{ iv }=\alpha\)
    • \(H _{ ij }=0\) for \(\phi_{ i }\) not adjacent to \(\phi_{ j }\)
    • \(H _{ ij }=\beta\) for \(\phi_{ i }\) not adjacent to \(\phi_{ j }\)
    • \(S _{i j}=1\)
    • \(S _{ ij }=0\)

    The foregoing approximation is the simplest. Different computational methods treat these integrals differently. Extended Hückel Theory (EHT) includes all valence orbitals in the basis (as opposed to the highest energy atomic orbitals), all Sijs are calculated, the Hiis are estimated from spectroscopic data (as opposed to a constant, α) and Hijs are estimated from a simple function of \(S_{ii}\), \(H_{ii}\) and \(H_{ij}\) (zero differential overlap approximation).

    The EHT (and other Hückel methods) are termed semi–empirical because they rely on experimental data for quantification of parameters. Other semi-empirical methods include CNDO, MINDO, INDO, etc. in which more care is taken in evaluating Hij (these methods are based on self-consistent field procedures). Still higher level computational methods calculate the pertinent energies from first principles – ab initio and DFT. Here core potentials must be included and high order basis sets are used for the valence orbitals.

    Benzene

    As an example of the Hückel method, we will examine the frontier orbitals (i.e. determine eigenfunctions) and their associated orbital energies (i.e. eigenvalues) of benzene. The highest energy atomic orbitals of benzene are the C pπ orbitals. Hence, it is reasonable to begin the analysis by assuming that the frontier MO’s will be composed of LCAO of the C 2pπ orbitals:

    1.6: LCAO and Hückel Theory 1 (Eigenfunctions) (2)

    The matrix representations for this orbital basis in D6h is,

    \(E \cdot\left[\begin{array}{l}\phi_{1} \\ \phi_{2} \\ \phi_{3} \\ \phi_{4} \\ \phi_{5} \\ \phi_{6}\end{array}\right]=\left[\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}\phi_{1} \\ \phi_{2} \\ \phi_{3} \\ \phi_{4} \\ \phi_{5} \\ \phi_{6}\end{array}\right]=\left[\begin{array}{l}\phi_{1} \\ \phi_{2} \\ \phi_{3} \\ \phi_{4} \\ \phi_{5} \\ \phi_{6}\end{array}\right] \quad x_{\text {trace }}=6\)

    \(C _{6} \cdot\left[\begin{array}{l}\phi_{1} \\ \phi_{2} \\ \phi_{3} \\ \phi_{4} \\ \phi_{5} \\ \phi_{6}\end{array}\right]=\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}\phi_{1} \\ \phi_{2} \\ \phi_{3} \\ \phi_{4} \\ \phi_{5} \\ \phi_{6}\end{array}\right]=\left[\begin{array}{c}\phi_{2} \\ \phi_{3} \\ \phi_{4} \\ \phi_{5} \\ \phi_{6} \\ \phi_{1}\end{array}\right] \quad x_{\text {trace }}=0\)

    \(C _{2}^{\prime} \cdot\left[\begin{array}{c}\phi_{1} \\ \phi_{2} \\ \phi_{3} \\ \phi_{4} \\ \phi_{5} \\ \phi_{6}\end{array}\right]=\left[\begin{array}{rrrrrr}-1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}\phi_{1} \\ \phi_{2} \\ \phi_{3} \\ \phi_{4} \\ \phi_{5} \\ \phi_{6}\end{array}\right]=\left[\begin{array}{c}\bar{\phi}_{1} \\ \bar{\phi}_{6} \\ \bar{\phi}_{5} \\ \bar{\phi}_{4} \\ \bar{\phi}_{3} \\ \bar{\phi}_{2}\end{array}\right] \quad x _{\text {trace }}=-2\)

    The only orbitals that contribute to the trace are those that transform into +1 or –1 themselves (i.e. in phase or with opposite phase, respectively). Thus the trace of the remaining characters of the pπ basis may be determined by inspection:

    \begin{array}{c|cccccccccccc}
    \mathrm{D}_{6 \mathrm{~h}} & \mathrm{E} & 2 \mathrm{C}_{6} & 2 \mathrm{C}_{3} & \mathrm{C}_{2} & 3 \mathrm{C}_{2}^{\prime} & 3 \mathrm{C}_{2}^{\prime \prime} & \mathrm{i} & 2 \mathrm{~S}_{3} & 2 \mathrm{~S}_{6} & \sigma_{\mathrm{h}} & 3 \sigma_{\mathrm{v}} & 3 \sigma_{\mathrm{d}} \\
    \hline \Gamma_{\mathrm{p} \pi} & 6 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & -6 & 2 & 0
    \end{array}

    The Γ representation is a reducible basis that must be decomposed into irreducible representations.

    Decomposition of reducible representations may be accomplished with the following relation:

    1.6: LCAO and Hückel Theory 1 (Eigenfunctions) (3)

    Returning to the above example,

    \[a_{A_{19}}=\frac{1}{24}[6 \cdot 1 \cdot 1+0 \cdot 0 \cdot 0+(-2)(1)(3)+0+0+0+0+(-6)(1)(1)+2 \cdot 1 \cdot 3+0]=0 \nonumber\]

    thus A1g does not contribute to Γ

    How about \(a_{A_{2 u}}\)?

    \[a_{A_{2 u}}=\frac{1}{24}[6 \cdot 1 \cdot 1+0 \cdot 0 \cdot 0+(-2)(-1)(3)+0+0+0+0+(-6)(1)(-1)+2 \cdot 1 \cdot 3+0]=1 \nonumber\]

    Continuing the procedure, one finds,

    \[\Gamma_{ p \pi}= A _{2 u }+ B _{29}+ E _{19}+ E _{2 u }\]

    these are the symmetries of the MO’s formed by the LCAO of pπ orbitals in benzene.

    With symmetries established, LCAOs may be constructed by “projecting out” the appropriate linear combination. A projection operator, P(i) , allows the linear combination of the ith irreducible representation to be determined,

    1.6: LCAO and Hückel Theory 1 (Eigenfunctions) (4)

    A drawback of projecting out of the D6h point group is the large number of operators. The problem can be simplified by dropping to the pure rotational subgroup, C6. In this point group, the full extent of mixing among \(\phi_{1}\) through \(\phi_{6}\) is maintained; however the inversion center, and hence u and g symmetry labels are lost. Thus in the final analysis, the Γis in C6 will have to be correlated to those in D6h. Reformulating in C6,

    1.6: LCAO and Hückel Theory 1 (Eigenfunctions) (5)

    The projection of the SALC that from \(\phi_{1}\) transforms as A is,

    1.6: LCAO and Hückel Theory 1 (Eigenfunctions) (6)

    Continuing,

    • \(P ^{( B )} \phi_{1}=\phi_{1}-\phi_{2}+\phi_{3}-\phi_{4}+\phi_{5}-\phi_{6}\)
    • \(P ^{\left( E _{1 a}\right)} \phi_{1}=\phi_{1}+\varepsilon \phi_{2}-\varepsilon^{*} \phi_{3}-\phi_{4}-\varepsilon \phi_{5}+\varepsilon^{*} \phi_{6}\)
    • \(P ^{\left( E _{16}\right)} \phi_{1}=\phi_{1}+\varepsilon^{*} \phi_{2}-\varepsilon \phi_{3}-\phi_{4}-\varepsilon^{*} \phi_{5}+\varepsilon \phi_{6}\)
    • \(P ^{\left( E _{22}\right)} \phi_{1}=\phi_{1}-\varepsilon^{*} \phi_{2}-\varepsilon \phi_{3}+\phi_{4}-\varepsilon^{*} \phi_{5}-\varepsilon \phi_{6}\)
    • \(P ^{\left( E _{26}\right)} \phi_{1}=\phi_{1}-\varepsilon \phi_{2}-\varepsilon^{*} \phi_{3}+\phi_{4}-\varepsilon \phi_{5}-\varepsilon^{*} \phi_{6}\)

    The projections contain imaginary components; the real component of the linear combination may be realized by taking ± linear combinations:

    For \(\psi\left( E _{1 a }\right)\) SALC’s:

    \(\psi_{3}^{\prime}\left(E_{1 a}\right)+\psi_{4}^{\prime}\left(E_{1 b}\right)=2 \phi_{1}+\left(\varepsilon+\varepsilon^{*}\right) \phi_{2}-\left(\varepsilon+\varepsilon^{*}\right) \phi_{3}-2 \phi_{4}-\left(\varepsilon+\varepsilon^{*}\right) \phi_{5}+\left(\varepsilon+\varepsilon^{*}\right) \phi_{6}\)
    \(\psi_{3}^{\prime}\left(E_{1 a}\right)-\psi_{4}^{\prime}\left(E_{1 b}\right)=\left(\varepsilon-\varepsilon^{*}\right) \phi_{2}+\left(\varepsilon-\varepsilon^{*}\right) \phi_{3}+\left(\varepsilon^{*}-\varepsilon\right) \phi_{5}+\left(\varepsilon^{*}-\varepsilon\right) \phi_{6}\)

    where in the C6 point group,

    \(\varepsilon=\exp \left(\frac{2 \pi}{6}\right) i =\cos \frac{2 \pi}{6}- i \sin \frac{2 \pi}{6}\)
    \(\therefore \varepsilon+\varepsilon^{*}=\cos \frac{2 \pi}{6}- i \sin \frac{2 \pi}{6}+\cos \frac{2 \pi}{6}+ i \sin \frac{2 \pi}{6}=2 \cos \frac{2 \pi}{6}=1\)
    \(\varepsilon^{*}-\varepsilon=-\cos \frac{2 \pi}{6}+ i \sin \frac{2 \pi}{6}-\cos \frac{2 \pi}{6}+ i \sin \frac{2 \pi}{6}=2 i \sin \frac{2 \pi}{6}= i \sqrt{3}\)
    \(\varepsilon-\varepsilon^{*}=\cos \frac{2 \pi}{6}- i \sin \frac{2 \pi}{6}-\left(\cos \frac{2 \pi}{6}+ i \sin \frac{2 \pi}{6}\right)=-2 i \sin \frac{2 \pi}{6}=- i \sqrt{3}\)

    ∴ the E1a LCAO’s reduce to (again ignoring the constant prefactor),

    \(\psi_{3}\left( E _{1}\right)=\psi_{3}^{\prime}\left( E _{1 a }\right)+\psi_{4}^{\prime}\left( E _{1 b }\right)=2 \phi_{1}+\phi_{2}-\phi_{3}-2 \phi_{4}-\phi_{5}+\phi_{6}\)
    \(\psi_{4}\left( E _{1}\right)=\psi_{3}^{\prime}\left( E _{1 a }\right)-\psi_{4}^{\prime}\left( E _{1 b }\right)=\phi_{2}+\phi_{3}-\phi_{5}-\phi_{6}\)

    Similarly for the ψ5(E2) and ψ6(E2) LCAO’s… normalizing the SALC’s

    \(\begin{array}{ll}\psi_{1}( A )=\frac{1}{\sqrt{6}}\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}+\phi_{5}+\phi_{6}\right) & \psi_{2}( B )=\frac{1}{\sqrt{6}}\left(\phi_{1}-\phi_{2}+\phi_{3}-\phi_{4}+\phi_{5}+\phi_{6}\right) \\ \psi_{3}\left( E _{1}\right)=\frac{1}{\sqrt{12}}\left(2 \phi_{1}+\phi_{2}-\phi_{3}-2 \phi_{4}-\phi_{5}+\phi_{6}\right) & \psi_{4}\left( E _{1}\right)=\frac{1}{2}\left(\phi_{2}+\phi_{3}-\phi_{5}-\phi_{6}\right) \\ \psi_{5}\left( E _{2}\right)=\frac{1}{\sqrt{12}}\left(2 \phi_{1}-\phi_{2}-\phi_{3}+2 \phi_{4}-\phi_{5}-\phi_{6}\right) & \psi_{6}\left( E _{2}\right)=\frac{1}{2}\left(\phi_{2}-\phi_{3}+\phi_{5}-\phi_{6}\right)\end{array}\)

    The pictorial representation of the SALC’s are,

    1.6: LCAO and Hückel Theory 1 (Eigenfunctions) (7)

    1.6: LCAO and Hückel Theory 1 (Eigenfunctions) (2024)

    References

    Top Articles
    Recipe This | Instant Pot Caramel From Condensed Milk
    Old Fashioned Ginger Snap Cookies Recipe
    Funny Roblox Id Codes 2023
    Golden Abyss - Chapter 5 - Lunar_Angel
    Www.paystubportal.com/7-11 Login
    Joi Databas
    DPhil Research - List of thesis titles
    Shs Games 1V1 Lol
    Evil Dead Rise Showtimes Near Massena Movieplex
    Steamy Afternoon With Handsome Fernando
    Which aspects are important in sales |#1 Prospection
    Top Hat Trailer Wiring Diagram
    World History Kazwire
    R/Altfeet
    George The Animal Steele Gif
    Red Tomatoes Farmers Market Menu
    Nalley Tartar Sauce
    Chile Crunch Original
    Immortal Ink Waxahachie
    Craigslist Free Stuff Santa Cruz
    Mflwer
    Spergo Net Worth 2022
    Costco Gas Foster City
    Obsidian Guard's Cutlass
    Marvon McCray Update: Did He Pass Away Or Is He Still Alive?
    Mccain Agportal
    Amih Stocktwits
    Fort Mccoy Fire Map
    Uta Kinesiology Advising
    Kcwi Tv Schedule
    What Time Does Walmart Auto Center Open
    Nesb Routing Number
    Olivia Maeday
    Random Bibleizer
    10 Best Places to Go and Things to Know for a Trip to the Hickory M...
    Black Lion Backpack And Glider Voucher
    Gopher Carts Pensacola Beach
    Duke University Transcript Request
    Lincoln Financial Field, section 110, row 4, home of Philadelphia Eagles, Temple Owls, page 1
    Jambus - Definition, Beispiele, Merkmale, Wirkung
    Ark Unlock All Skins Command
    Craigslist Red Wing Mn
    D3 Boards
    Jail View Sumter
    Nancy Pazelt Obituary
    Birmingham City Schools Clever Login
    Thotsbook Com
    Funkin' on the Heights
    Vci Classified Paducah
    Www Pig11 Net
    Ty Glass Sentenced
    Latest Posts
    Article information

    Author: Twana Towne Ret

    Last Updated:

    Views: 6327

    Rating: 4.3 / 5 (44 voted)

    Reviews: 83% of readers found this page helpful

    Author information

    Name: Twana Towne Ret

    Birthday: 1994-03-19

    Address: Apt. 990 97439 Corwin Motorway, Port Eliseoburgh, NM 99144-2618

    Phone: +5958753152963

    Job: National Specialist

    Hobby: Kayaking, Photography, Skydiving, Embroidery, Leather crafting, Orienteering, Cooking

    Introduction: My name is Twana Towne Ret, I am a famous, talented, joyous, perfect, powerful, inquisitive, lovely person who loves writing and wants to share my knowledge and understanding with you.